目次

マクスウェルの方程式

名前 積分形 / 微分形 / 不連続面での境界条件 式の意味
ファラデー・マクスウェルの法則
 
 
C
Edl =
d
dt
 
 
S
BdS
V =
 
 
C
Edl
…曲面Sの外周C上に生じた起電力

Φm =
 
 
S
BdS
…曲面Sを貫く磁束

V =
d
dt
Φm


閉路上に生じる起電力はその閉路を貫く磁束の変化に等しい
× E =
∂t
B
n×( E1 E2 ) = 0
アンペア・マクスウェルの法則
 
 
C
Hdl =
 
 
S
JdS+
d
dt
 
 
S
DdS
Vm =
 
 
C
Hdl
…曲面Sの外周C上に生じた起磁力

Φe =
 
 
S
DdS
…曲面Sを貫く電束

I =
 
 
S
JdS
…曲面Sを貫く電流

Vm = I +
d
dt
Φe


電流が流れるか、電束が変化するとその周囲に磁界が発生する
× H = J +
∂t
D
n×( H1 H2 ) = K
電束に関するガウスの法則
 
 
S
DdS =
 
 
V
ρdV
Φe =
 
 
S
DdS
…閉曲面Sを貫く電束

Q =
 
 
V
ρdV
…閉曲面Sの内部Vにある電荷の総和

Φe = Q

平曲面を貫く電束はその内部にある電化の総和に等しい
D = ρ
n( D1 D2 ) = ξ
磁束に関するガウスの法則
 
 
S
BdS = 0
Φm =
 
 
S
BdS
…閉曲面Sを貫く磁束



Φm = 0

平曲面を貫く磁束は常に0
B = 0
n( B1 B2 ) = 0

更新履歴

ブログ